Endothelial response to stress from exogenous Zn2+ resembles that of NO-mediated nitrosative stress, and is protected by MT-1 overexpression.

نویسندگان

  • Dean A Wiseman
  • Sandra M Wells
  • Jason Wilham
  • Maryann Hubbard
  • Jonathan E Welker
  • Stephen M Black
چکیده

While nitric oxide (NO)-mediated biological interactions have been intensively studied, the underlying mechanisms of nitrosative stress with resulting pathology remain unclear. Previous studies have demonstrated that NO exposure increases free zinc ions (Zn(2+)) within cells. However, the resulting effects on endothelial cell survival have not been adequately resolved. Thus the purpose of this study was to investigate the role of altered zinc homeostasis on endothelial cell survival. Initially, we confirmed the previously observed significant increase in free Zn(2+) with a subsequent induction of apoptosis in our pulmonary artery endothelial cells (PAECs) exposed to the NO donor N-[2-aminoethyl]-N-[2-hydroxy-2-nitrosohydrazino]-1,2-ethylenediamine. However, NO has many effects upon cell function and we wanted to specifically evaluate the effects mediated by zinc. To accomplish this we utilized the direct addition of zinc chloride (ZnCl(2)) to PAEC. We observed that Zn(2+)-exposed PAECs exhibited a dose-dependent increase in superoxide (O(2)(-).) generation that was localized to the mitochondria. Furthermore, we found Zn(2+)-exposed PAECs exhibited a significant reduction in mitochondrial membrane potential, loss of cardiolipin from the inner leaflet, caspase activation, and significant increases in TdT-mediated dUTP nick end labeling-positive cells. Furthermore, using an adenoviral construct for the overexpression of the Zn(2+)-binding protein, metallothionein-1 (MT-1), we found either MT-1 overexpression or coincubation with a Zn(2+)-selective chelator, N,N,N',N'-tetrakis(2-pyridylmethyl)ethylene-diamide, in PAECs significantly protected the mitochondria from both NO and Zn(2+)-mediated disruption and induction of apoptosis and cell death. In summary, our results indicate that a loss of Zn(2+) homeostasis produces mitochondrial dysfunction, increased oxidative stress, and apoptotic cell death. We propose that regulation of Zn(2+) levels may represent a potential therapeutic target for disease associated with both nitrosative and oxidative stress.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endothelial response to stress from exogenous Zn resembles that of NO-mediated nitrosative stress, and is protected by MT-1 overexpression

Wiseman, Dean A., Sandra M. Wells, Jason Wilham, Maryann Hubbard, Jonathan E. Welker, and Stephen M. Black. Endothelial response to stress from exogenous Zn resembles that of NO-mediated nitrosative stress, and is protected by MT-1 overexpression. Am J Physiol Cell Physiol 291: C555–C568, 2006. First published May 24, 2006; doi:10.1152/ajpcell.00509.2005.—While nitric oxide (NO)-mediated biolog...

متن کامل

Regulation of zinc homeostasis by inducible NO synthase-derived NO: nuclear metallothionein translocation and intranuclear Zn2+ release.

Zn2+ is critical for the functional and structural integrity of cells and contributes to a number of important processes including gene expression. It has been shown that NO exogenously applied via NO donors resulting in nitrosative stress leads to cytoplasmic Zn2+ release from the zinc storing protein metallothionein (MT) and probably other proteins that complex Zn2+ via cysteine thiols. We sh...

متن کامل

Aldosterone Induces Oxidative Stress Via NADPH Oxidase and Downregulates the Endothelial NO Synthesase in Human Endothelial Cells

Aldosterone is traditionally viewed as a hormone regulating electrolyte and blood pressure homeostasis. Recent studies suggest that Aldo can cause microvascular damage, oxidative stress and endothelial dysfunction. However, its exact cellular mechanisms remain obscure. This study was undertaken to examine the effect of Aldo on superoxide production in human umbilical artery endothelial cel...

متن کامل

Nitric oxide mediated the effects of nebivolol in cardiorenal syndrome

Objective(s): Despite several proposed mechanisms for the pathophysiology of cardiorenal syndrome (CRS), the exact mechanism remains unclear. Nitrosative stress has been argued as a key mechanism recently. Nebivolol is a beta-blocker with nitric oxide (NO)-releasing effect. In the present study, NO-mediated effects of two different treatment regimes of nebivolol in CRS...

متن کامل

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 291 3  شماره 

صفحات  -

تاریخ انتشار 2006